Capturing the Sudden Concept Drift in Process Mining

نویسندگان

  • Manoj Kumar M. V.
  • Likewin Thomas
  • Annappa Basava
چکیده

Concept drift is the condition when the process changes during the course of execution. Current methods and analysis techniques existing in process mining are not proficient of analyzing the process which has experienced the concept drift. State-of-the-art process mining approaches consider the process as a static entity and assume that process remains same from beginning of its execution period to end. Emphasis of this paper is to propose the technique for localizing concept drift in control-flow perspective by making use of activity correlation strength feature extracted using process log. Concept drift in the process is localized by applying statistical hypothesis testing methods. The proposed method is verified and validated on few of the real-life and artificial process logs, results obtained are promising in the direction of efficiently localizing the sudden concept drifts in process-log.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Concept drift detection in event logs using statistical information of variants

In recent years, business process management (BPM) has been highly regarded as an improvement in the efficiency and effectiveness of organizations. Extracting and analyzing information on business processes is an important part of this structure. But these processes are not sustainable over time and may change for a variety of reasons, such as the environment and human resources. These changes ...

متن کامل

Online Techniques for Dealing with Concept Drift in Process Mining

Concept drift is an important concern for any data analysis scenario involving temporally ordered data. In the last decade Process mining arose as a discipline that uses the logs of information systems in order to mine, analyze and enhance the process dimension. There is very little work dealing with concept drift in process mining. In this paper we present the first online mechanism for detect...

متن کامل

Using a Classifier Pool in Accuracy Based Tracking of Recurring Concepts in Data Stream Classification

Data streams have some unique properties which make them applicable in precise modeling of many real data mining applications. The most challenging property of data streams is the occurrence of ‘‘concept drift’’. Recurring concepts is a type of concept drift which can be seen in most of real world problems. Detecting recurring concepts makes it possible to exploit previous knowledge obtained in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015